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In earlier work [F. Perrot and N. H. March, Phys. Rev. A 41, 4521 (1990); 42, 4884 (1990)], the elec-
tron theory of pair potentials in simple s-p liquid metals, such as Na and K near freezing, was set out.
The potential thus derived for Na is in good agreement in its major features with that obtained by invert-
ing diffraction measurements of the liquid structure factor S (k). The present study addresses polariza-
tion effects in the interatomic interaction in such s-p metals, a simple physical model being introduced.
By a lower-bound argument, this is shown to lead to an attractive contribution to the effective pair po-
tential which decays as R ~* at large interionic separation R. Since it is recognized that some difficulties
still remain in justifying the simple model employed in a dense system, it is important to test experimen-
tally whether such a long-range interaction is actually present in liquid Na or K near freezing; it is pro-
posed that highly accurate small-angle neutron scattering could resolve this question precisely. Though
less decisive for detection of the long-range polarization effect, the possible relevance to (i) long-
wavelength phonon properties in hot (and cold) crystalline Na metal and (ii) the interaction between
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charged defects in metals (e.g., a divacancy) is also noted.

PACS number(s): 61.25.Mv, 61.20.—p

I. INTRODUCTION

In previous studies by Perrot and March [1,2; referred
to below as PM], the density-functional theory of pair po-
tentials in simple metals such as Na and K near freezing
was set out, and brought into contact with results from
liquid-structure inversion. As shown in PM for liquid Na
just above its freezing point, all the salient features of the
“diffraction” pair potential as extracted from the liquid
structure x-ray measurements of Greenfield, Wellendorf,
and Wiser [3] by Reatto [4] are reflected in the ‘“density
functional” potential.

However, some quantitative differences remain be-
tween these two pair potentials. This has prompted us,
especially because the diffraction potential at large in-
terionic separation lies below the zero potential axis,
whereas the electron-theory potential lies above this axis
out to 6.5 A, to enquire whether there may be another
physical contribution to ‘“correct” the electron-theory
potential. We have been led thereby to consider the pos-
sibility of a long-range polarization interaction between a
pair of screened ions embedded in a metallic medium.

The issue of polarization effects in the interatomic in-
teraction in metals has already attracted some interest in
recent years, notable work being that of Maggs and Ash-
croft [5]. These workers had in mind rather specifically
metals with d electrons (e.g., silver), whereas in the
present study we focus exclusively on a model that should
have relevance to ‘‘nearly-free-electron” metals such as
Na and K above. However, we must stress at the outset
that all our present results are based on a static computa-
tion of (a lower bound to) the polarization interaction be-
tween two ions and their screening electron clouds, on
the basis of which (model) the centers of the blobs of elec-
trons are found to be displaced from the positions of the
ions.
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It needs to be said, at the outset, that it remains to give
a full theoretical justification of this approach in a dense
system, and in particular to use the polarization interac-
tion calculated here as a pairwise additive potential. It is
a problem for the future to build a bridge between the
present static calculation and a fluctuation description.
Nevertheless, we believe the consequences of our admit-
tedly oversimplified static computation are of sufficient
interest to prompt experimental studies of the long-range
polarization interaction that arises in the present work.

Returning to the original motivation of our static cal-
culation, early work by Gurney and Magee [6] on the
free-space H, molecule allowed the 1s hydrogen orbitals
to “float” away from the protons. The distance along the
H, molecular axis by which these orbitals move was then
treated as a variational parameter. Such a treatment im-
mediately gave a substantial improvement in the ground-
state energy as a function of internuclear separation.

Since the earlier work of PM was built directly on the
superposition density of single ions, it seemed clear that
the simplest approach was to allow such spherical blobs
of screening charge to float off the ionic centers, without,
however, any deformation of the single-ion spherical
blobs. This is the picture adopted in the present work.
Remarkably, it then turns out that the new potential en-
ergy curve can be largely characterized by the original
pair potential of PM, plus the (assumed vector) displace-
ments of the two blobs of screening charge from the ionic
centers. Since, at large interionic separations, such dis-
placements must become small, the “correction” to the
standard pair potential ¢(R) of PM can be expressed in
terms of this potential and its low-order derivatives, plus
the vector displacements.

Sections II and III are concerned with reporting a cal-
culation based on this simple floating blobs model of the
polarization interaction. Thus Sec. II sets out the correc-
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tion to ¢(R), say A¢d(R), the essential asymptotic result
being expressed in Eq. (2.16) below. The vector displace-
ments, however, are input information into this equation.
Then, in Sec. III, we determine the lower bound of this
correction A¢(R) to the pair potential. This leads, in
what seems a rather natural way, to a polarization in-
teraction (3.7), which falls off as the inverse fourth power
of the interionic pair separation. Section IV is concerned
with the possible experimental implications that such an
inverse power law would have. Section V constitutes a
summary, with some proposals for further work.

II. POLARIZATION-EFFECTS-CORRECTED
PAIR INTERACTION

The model of ““valence blobs of charge floating off the
nuclei” offers an approach to_take into account long-
range correlation effects. This is already evident from the
free-space study of London dispersion forces in homonu-
clear diatomic molecules by Egorov and March [7].

Within the framework of the derivation of pair interac-
tions from density functional theory, this would corre-
spond to a change in the functional G [n], where n is the
electron density, which describes kinetic plus exchange
and correlation effects, when two ions are present. In the
case of a single ion, G [n] is that of the uniform electron
gas Gy[n], with the corresponding response function re-
lated to the functional second derivative. For two ions,
we assume that the second derivative, and thus the
response function, are changed due to polarization
effects. The displaced density then becomes

An(r+R/2—8R,)+An(r—R/2—38R,) .

For any system containing one or two ions screened in
a bath of conduction electrons, the change in total ener-
gy, with respect to that of the originally uniform electron
background (i.e., without the ions embedded) can be writ-
ten, as commonly done in second-order perturbation
theory:

AE=fumrT dr+%fvm8n dr

+ (change in ion-ion interaction) . (2.1

In this equation, 7 denotes the density of the unperturbed
homogeneous electron gas, v,,; the perturbing external
potential, while 6 is the total displaced electron density
due to embedding the ions in the background of conduc-
tion electrons.

It will be assumed that the system with a pair of ions
embedded in the electron gas, and the system with but a
single ion, both satisfy Eq. (2.1). Thus the change in the
pair interaction results from the change in the second
term of AE, associated with floating the electron clouds,
all the other quantities (v,,, and R, the interionic separa-
tion) being fixed.

We note here that Eq. (2.1) is applicable to weak per-
turbations, i.e., with v, taken as a pseudopotential. In
what follows, it will be used with the true Coulomb po-
tential of the nuclei. It is easy to verify that this does not
change the form of the results at large R, except for the
values of the constants.

A. Change in pair interaction due to floating
of electronic clouds off the ionic centers

With the ions at positions separated by the vector R,
let us now allow the (assumed spherical) blob of screening
charge to float off ion 1 by an amount determined by the
vector 8R,. Similarly, the electron valence cloud round
ion 2 floats off by amount §R,.

The change A¢(R) in the pair potential ¢(R) is then
calculable, with An denoting the density displaced by one
ion acting alone. With the notation that a circle (o)
means integration through the whole of space, A¢(R) can
be written, with Z denoting the valence (Z =1 for Na
and K, 2 for Be),

1 1

AH(R)=—1Z
$(R) 27| [r+8R,|  [r+R+8R,|

1 1 1
+ + -
r—R+6R,| ' [r+8R,| 1]

\

- lr-:Rl - ’r_lR( _TrlT o An(r) .
(2.2)
Recalling next that the “‘standard” pair interaction is
¢(R)=Z?2—ﬁozsn(r), 2.3)
one can transform the expression (2.2) to read
2A¢(R)=¢(|R+8R,|)+¢(|R—8R,|)
2 2 2
—2¢(R)- IRfSRZI - IR—ZBRll + 2
+N(8R,)+N(8R,) . (2.4)
In Eq. (2.4), N (8R) denotes the quantity
NGER)=—Z | ———L |oan(n . 2.5
Ir+8R| r

B. Approximate treatment for small
floating distances

In what follows, we shall now develop the above results
in a form which will lead to the asymptotic behavior of
A@¢(R): the change in the standard ¢(R) due to the long-
range polarization interaction. From Eq. (2.5), one can
first write

—Z

N(8R)=—+

8R 2 R
sk J, An(dmxdx+Z [ 7 An (x)dmx dx .

(2.6)

Assuming that An(r) is almost constant and equal to
An (0) in the range 0—8R, one readily obtains

N(SR)= 93iZAn(0)(8R )2 2.7)

(see also the Appendix, where the cruder Thomas-Fermi
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approximation is employed).

This is the point at which to return to Eq. (2.4) for
A@#(R). One can expand this equation in terms of
s =8R /R and 6, the angle between SR and R for the first
term on the right-hand side of Eq. (2.4). One can then
develop such an expansion by noting that

d(|R+SR[)=¢(R)+¢%[IR+8R|—R
¢R [IR+86R|—R >+ - 2.8)
In terms of s and 6 introduced above:
IR+8R|—R =R[scosf+1s*(1—cos’0)+0(s*)] (2.9
and
(|JR+8R|—R)?=R?s%cos’0+0(s%)] . (2.10)

We must stress here the considerable advantage that
has been gained in replacing An in Eq. (2.2) by ¢ to reach
Eq. (2.4). Since, as discussed in PM, at large R, ¢ de-
creases as R~ cos(2kfR +a), all its derivatives fall off
with distance as R %, and in particular ¢' is negligible
compared to Z2/R 2. Specifically, Eq. (2.4) becomes

2

2A¢(R)=R ¢'R+Z [—s,cos6,+Ls3(1—cos’6,)]

ZZ

—— |oh— s3cos?0,+Ms2+0(s})

+(similar expression in s,, —cosf,) .  (2.11)

Here, the quantity M follows from Eq. (2.7) as

M—~2°3£ZA (0)R*=mR? .

(2.12)

It is now useful to define three quantities 4, B, and C
and to note, as we do this, their asymptotic forms as
R — . The definitions adopted are

z* yA

A=R ~ = 2.13
¢R R2 R—wo R . ( )

_R . 2Z* | 4 372
2 2 R3 2 R>w 2R’ (2.14)

and
_ A 2
C=M+-> ~ mR?. (2.15)
2R4>oo

Returning to Eq. (2.11), one then finds
2A¢(R)= — As,cos6,+ Bs3cos?0,+Cs?
+(similar terms with s; —s,, 8,—7—06,) .
(2.16)

Equation (2.16) is then the basic consequence of the
“floating-valence-blobs” model to represent the long-
range polarization interaction in simple liquid metals
such as Na and K near freezing.
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Of course, the above expression (2.16) is valid within
that model, for given displacements of the screening
charges from the ionic centers 1 and 2, described by the
variables (s;,0;), i =1 and 2. But to complete the calcu-
lation, one must determine these variations by a first-
principles method.

III. LOWER BOUND TO THE CHANGE A¢(R)
IN THE PAIR INTERACTION

The major step still to be taken is to turn the form
(2.16), which follows very generally for A¢(R), the
correction to the standard pair interaction ¢(R) at large
R, into an explicit asymptotic result for A¢(R). We shall
tackle this by determining the maximum correction that
this floating-blobs model can make to the original pair
potential ¢(R). In order to find this lower bound to A¢,
we must minimize Eq. (2.16) with respect to (s;,0;), i=1
and 2. One is then led to the equations

Assinf, —2Bs?sinf,cosf, =0 (3.1

and
— A cosf; +2Bs,cos’0;+2Cs; =0 . (3.2)

To satisfy Eq. (3.1), one must take the solution sin8; =0.
The other solution s;cosf,= A4 /2B is not physically ac-
ceptable because, at large R, using Eq. (2.13) and (2.14),

A /B —Z and thus is not small. With sin, =0, one has
cosf, =€, =*1 (3.3)
and inserting this into Eq. (3.2) yields
— Ae;+2(B +C)s; =0 . (3.4

Inserting the asymptotic forms of 4, B, and C from Eqgs.

(2.13)—(2.15), one finds
SRI 6122 1
== ey 3.5
Sy R 2m R3 (3.5)
or
_ €6z’ _
OR = m R for ;=1 . (3.6)

The plus sign in Eq. (3.3) follows because the magnitude
S8R | must be positive.

The expression in (s,, —cosf,) is exactly symmetric, so
that one finds €,=—1. Hence, returning to Eq. (2.16)
and inserting these results, together with the asymptotic
forms for large R of A4, B, and C, one is led to the final
form of the lower bound:

__AZ
4B+C)

—z¢ 1
4m R4

A¢d(R)= (3.7)
The displacements of the floating blobs of valence screen-
ing from the ionic centers are in opposite directions along
the axis joining the ionic centers. The distance between
the centers of the electronic charge is less than R.

It must be stressed that the inverse-fourth-power
dependence on the interionic separation R given for the
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change in the standard pair potential ¢(R) in Eq. (3.7)
does not behave like the London dispersion force. It is
specifically a polarization interaction in a simple metallic
medium such as liquid Na or K near freezing.

IV. POSSIBLE EXPERIMENTAL IMPLICATIONS
OF INVERSE-FOURTH-POWER
POLARIZATION INTERACTION

The first comment to make in relation to Eq. (3.7) is
that it is qualitatively in accord with the differences be-
tween the diffraction potential for Na obtained by Reatto
[4] and the density functional standard pair potential cal-
culated by Perrot and March [1]. The lowering of the
standard electron theory potential predicted in Eq. (3.7)
qualitatively brings the two potentials together at large
R. However, the asymptotic forom (3.7) could not be ex-
pected to work inside some 4.5 A, as the electron theory
and diffraction potentials cross one another at just less
than 4 A.

The second point relating to Eq. (3.7) is that, guided by
pseudopotential representations of ¢(R), which yield
most directly its Fourier transform #(k), the leading
asymptotic form

cos(2k ;R +a)
¢(R)x Ry 4.1)
leads to singularities at k =2k, in (k). However, the
correction A¢(R) in Eq. (3.7) leads to Ad(k) having a
term proportional to k as k—0, i.e., the total Fourier
transform now has two singular points: k=0 and
k =2k, in contrast to the standard ¢(R) in Eq. (4.1) for
a sharp Fermi surface of diameter 2k .

Such behavior in the Fourier transform of the effective
potential is accessible to diffraction experiments on sim-
ple liquid metals through the Ornstein-Zernike direct
correlation function c(r). If g(r) denotes the pair func-
tion, then the total correlation function A (r)=g(r)—1 is
related to ¢ (7) via the convolution equation

h(n=c(r+n, [c(rHh(t—r)dr (4.2)

where n, is the atomic-number density. With the usual
liquid structure factor S (k) related to the Fourier trans-
form h(k) through

h(k)=S(k)—1, (4.3)

Eq. (4.2) can be solved for ¢(k), the Fourier transform of
c(r), as
S(k)—1
Fky=k)—1
c="5

Since S'(k =0) is known from the fluctuation theory re-
sult

(4.4)

S(0)=n,kpTK , (4.5)

where K is the isothermal compressibility, it follows
from Eqgs. (4.5) and (4.4) that ¢(k =0) is determined by
thermodynamic measurements. Then it is widely accept-
ed by workers in classical liquid-structure theory that, at
sufficiently large r,

—o(r)

kT (4.6)

c(r)~

Hence one is led, since there is an inverse-fourth-power
“tail” according to the bound (3.7) on the corrected pair
potential, to the small-angle form of ¢(k):

c(k)=e(k =0)+c k+c,k?+ -+ . 4.7)

Equation (4.7), a consequence of the R ~* form in Eq.
(3.7) for liquid metals, is crucially different from the
small-angle scattering from the insulating liquid argon,
where ¢; =0 and the London dispersion force referred to
in Sec. I introduces a term c;k* into Eq. (4.7). This term
is verified to be present from the neutron diffraction mea-
surements on liquid argon near the triple point by Yar-
nell et al. [8]. The magnitude of ¢; can be obtained in
terms of the London dispersion coefficient C¢, and theory
and experiment agree well for argon.

While there are indications [9] from the x-ray experi-
ments of Greenfield, Wellendorf, and Wiser [3] that there
is a k term in the expansion of ¢(k) at small k as in Eq.
(4.7), very careful small-angle scattering experiments will
be required before contact can be made with the magni-
tude of the R ~* term given in Eq. (3.7). It does, however,
depend explicitly on Z* so that a comparison of a
trivalent liquid metal such as Al with monovalent Na
might be useful experimentally.

V. SUMMARY AND PROPOSALS
FOR FURTHER WORK

The lower bound (3.7) to the polarization interaction
between screened ions in simple liquid metals such as Na
and K falls off according to the floating-blobs model like
the inverse fourth power of the interionic separation.
Though the calculation of the coefficient of this R ~* in-
teraction energy is from a lower-bound result, it does sug-
gest a strong dependence on valence Z.

Already, such a term does tend to lessen the (already
modest) discrepancy at large R between diffraction and
electron theory standard pair potentials for liquid Na.
However, it is pointed out that a direct test of the pres-
ence of an R ~* interaction at large R is possible by
studying the small-angle scattering of neutrons from
liquid Na or K, and Dr. M. W. Johnson of the Ruther-
ford Laboratory, U.K., is currently assessing the feasibili-
ty of such an experiment. The aim would be to measure
the liquid-structure factor S (k) down to very small k,
and then to construct the Ornstein-Zernike function ¢(k)
from Eq. (4.4). The question to be answered then is
whether the small-angle scattering can be explained by
the expansion (4.7) with ¢;70. The magnitude of c, is
directly connected with the magnitude of the R ~* polar-
ization interaction in Eq. (3.7) through the asymptotic re-
lation (4.5), which is valid in classical liquids provided
one is far from the critical point.

Harker [10] has raised the question as to whether such
a polarization interaction might also be accessible to ex-
periment via phonon dispersion relations in a Na or K
metallic crystal. In this context, it is highly relevant that
recent studies of the phonon-dispersion relations in hot
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crystals, i.e., near the melting point, have expressed these
dispersion relations in terms of the direct correlation
function c (r) in the liquid at melting [11,12]. The result
may be written

2

2 Ma q. 7
w0y == %( T-a+K | $a+K)
2
— l—q—q—K JZ(K);, (5.1)

where the K’s denote reciprocal lattice vectors, provided
(i) the low-temperature result quoted in Eq. (5.1) has a
Debye-Waller factor incorporated following Ferconi and
Tosi [11] and (i) the Fourier transform ¢(k) of the pair
interaction is replaced by

—$(k)—(kpTe(k) -1 (5.2)

where T, is the melting temperature. We emphasize
below the hot crystal because of the link (5.2) to the
direct correlation function in the liquid metal at freezing.
Of course, the phonons in the cold crystal will also reflect
any polarization interaction in the long-wavelength limit.
Since, with polarization interaction as in Eq. (3.7), ¢(k)
has the small k expansion (4.7), we must expect from Eq.
(5.1) that, at least in principle, ¢, 70 will be reflected in
the phonon dispersion @, in Eq. (5.1) when the replace-
ment (5.2) is made. However, until a decisive theoretical
prediction (or liquid diffraction measurement) of ¢, in Eq.
(4.7), or equivalently of the coefficient of R “4*in Eq. (3.7),
can be made, which may well require transcending the
floating-blobs model employed throughout this paper (see
Sec. I) no quantitative assessment will be possible of the
effect of polarization interaction on the phonons.

In a different area, the work in Refs. [13] and [14] cited
in the Appendix prompts us to add that the long-range
polarization effect predicted in the present investigation
may also have relevance to the interaction between
charged defects in simple metals (e.g., a divacancy).
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APPENDIX: THOMAS-FERMI ENERGY
FUNCTIONAL AND LINEARIZED
DISPLACED CHARGE

To investigate the dependence of the results of the
main text on the form of the energy functional, we have
extended the treatment of March and co-workers [13,14]
within the Thomas-Fermi approximation. These workers
expanded the Thomas-Fermi kinetic energy to second or-
der in the displaced charge, when measured from the un-
perturbed homogeneous electron gas, as in the main text.
Within this framework, we have also used the floating-
blobs model to repeat the calculation of the correction to
the pair interaction, which in the Thomas-Fermi linear-
ized approximation is ¢(R)=[(Ze)*/R Jexp(—gR), with
q the inverse Thomas-Fermi screening length [see Eq.
(A1) below]. We have studied the energy as a function of
the amount of floating 8R from the ionic centers, and
have performed numerical calculations which show that
there is no minimum for A¢, except at SR =0. These cal-
culations have also been repeated using the next-highest-
order approximation in the displaced charge in the kinet-
ic energy, with the same conclusion.

Looked at in a manner entirely paralleling the ap-

proach in the main text, one can use alternatively the

linearized Thomas-Fermi approximation for the dis-
placed charge, namely,

An= %exp( —qr),

) (A1)

4k
q2=——[- where ay=
7Tao me

5 -
Then the contribution (2.5) of the text can be readily eval-
uated and the central point is that, because of the semi-
classical form (A1), the quantity N(8R) now has a term
linear in 8R and a quadratic term with a negative
coefficient. The conclusion is again the same as in the
calculation outlined immediately above; there is no
minimum in A¢ except at SR =0. So one concludes that
the polarization interaction in the text only follows pro-
vided a refined density-functional theory is used which
transcends the semiclassical approximations inherent in
the Thomas-Fermi theory.
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